LOCALISATION SYSTEMS FOR INTELLIGENT VEHICLES: **NEEDS AND CHALLENGES**

Javier Ibanez-Guzman Ph.D., C.Eng.

OUTLINE

Context

- The motivation
- Intelligent Vehicles → Vehicle Navigation

Needs & Challenges

- Driving Assistance Systems
 - E.g. Road Intersection Warning
- Cooperative Vehicles
 - E.g. Arrival of an emergency vehicle towards an intersection
- Autonomous Vehicles
 - E.g. Autonomous valet parking service

Challenges & Localisation Systems

- Sample Issues
- Some solutions

Conclusions

CONTEXT

INTELLIGENT VEHICLES → VEHICLE NAVIGATION

Driving Assistance Systems

 Machine Perception → Judgement / Evaluation → Inform / Warn → Operator or machine acts

o Challenges:

- Perception is a hard problem: Laser Rangers, Radars, Machine Vision
- Making a numerical model with incomplete information is difficult
- Understanding a situation to decide under uncertainty a challenge

Maps:

- Provide context, a priory information
- e.g. road geometry for ACC, speed limits, the proximity of an intersection, etc.

Localisation

- We need to know the vehicle location and projected to the map
- Any projection error will imply that any map information is false.

NEEDS: DRIVING ASSISTANCE SYSTEMS: EXAMPLE ROAD INTERSECTION WARNING

GROUPE RENAULT

RENAULT

NEEDS: DRIVING ASSISTANCE SYSTEMS: EXAMPLE ROAD INTERSECTION WARNING

Cooperating Vehicles V2X: Example Road Intersection Warning

Cooperating Vehicles V2X: The enabling technologies

Cooperating Vehicles V2X: e.g. Arrival of an emergency vehicle at an

intersection

 An emergency vehicle approaches an intersection.

- It communicates its presence and direction of motion to neighboring vehicles.
- Accordingly drivers are warned of its presence.

Cooperating Vehicles V2X: e.g. Arrival of an emergency vehicle at an intersection

- Gateway: Interface to vehicle CAN-bus
- Localisation System
- Purpose Built Map LDM
- Fusion Process
- Application Computer
- RF Modems 5.9GHz

RENAULT

CHALLENGES

Cooperating Vehicles V2X: e.g. Arrival of an emergency vehicle at an intersection

- Context. Intelligent Mobility
 - Technological convergence: Connectivity, Computer Power, Artificial Intelligence
- The trends:
 - Driverless Vehicles
 - New Mobility Services

- Autonomous Vehicles
 - Traditional Clients

A typical Functional Architecture

E.g. unmanned valet Parking

• Purpose:

To offer an *integrated valet* service for the use of EVs within the Technocentre Renault a demonstrator platform of autonomous driving technologies.

Objectives

- To provide a System Solution for the use of computer controlled EVs evolving in constrained spaces.
- To develop safe and reliable systems for autonomous vehicles, using automotive type components
- To build the technological know-how on: localisation, perception, navigation, control, integrity monitoring

E.g. unmanned valet Parking

E.g. unmanned valet Parking: Localisation system

DIRECTION R&D

RENAULT

CHALLENGES: AUTONOMOUS VEHICLES

- The navigation environment can be very complex
 - Urban Canyons, tree canopies,
- Information sources can suffer strong disturbances

22 MARCH, 2017

CHALLENGES: AUTONOMOUS VEHICLES

Effects on GNSS responses from tree canopies

Errors on GNSS responses even at simple roundabouts.

CHALLENGES: AUTONOMOUS VEHICLES

Effects on GNSS responses due to full occlusion as vehicle enters a tunnel.

AUTONOMOUS NAVIGATION: SOURCES OF INFORMATION

RENAULT

AUTONOMOUS NAVIGATION: DIFFERENT SOLUTIONS EXPLORED

22

CONCLUSIONS

- Localisation estimates (position & attitude) are needed for all modern intelligent vehicle applications.
- The limitations of GNSS systems are well understood, new features as those brought by the Galileo constellation should provide better performance.
- Autonomous Vehicles are a major trend: Localisation shall become a safety critical function → work towards high integrity localisation
- Combine different solutions:
 - Augment GNSS estimates via other sensors
 - Combine absolute localisation solutions with those from relative localisation solutions like optical odometry or SLAM
- Major interest by vehicle OEMs, hence our participation in ESCAPE one of the first Galileo centred solutions for Avs.

