

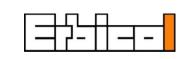




THOR: Innovative Thermal Management Concepts for Thermal Protection of Future Space Vehicles

「将来宇宙輸送機のための革新的熱防御法の研究開発」

H.Tanno, JAXA Kakuda Space Center 丹野英幸、宇宙航空研究開発機構 角田宇宙センター


Europe-Japan Space Forum, Tokyo, October 8, 2014











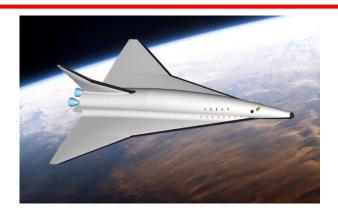











## **Motivation - Future Requirements**

When entering a planetary atomosphere space vehicles are exposed to extreme themal loads. To protect the vehicles a thermal protection system (TPS) is required for successful mission.



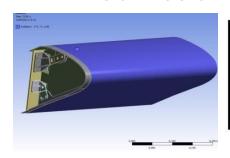
### **Blunt body (At present)**

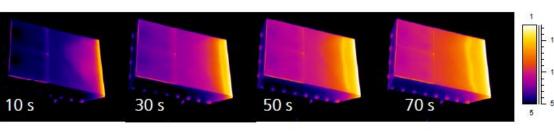
- low aerodynamic performance
- Low aeroheating load



#### Slender body (Next Generation)

- High aerodynamic performance
- High aeroheating load


THOR project aim to develop brand-new thermal protection system (TPS) for the next generation reentry vehicles.

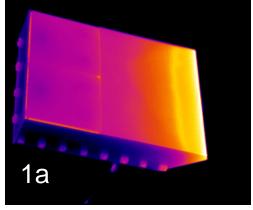




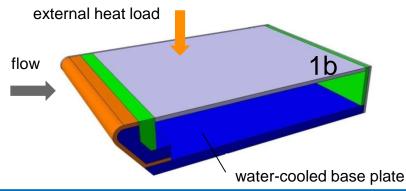

# **THOR Primary Objective & Strategy**

- The main objective of the THOR project is to design, develop, implement, test, and validate new thermal management concepts for atmospheric entry of space vehicles.
- ☐ The technical considerations for each concept include
  - detailed elaboration of the thermal management approach,
  - technical implementation including
    - Sample (Prototype TPS) manufacturing,
    - material characterization
  - redundant consolidation of the concepts by
    - Experimental verification in high enthalpy wind tunnel facilities and numerical simulation.









# **Passive and Active Cooling Concepts**

#### **Passive cooling**

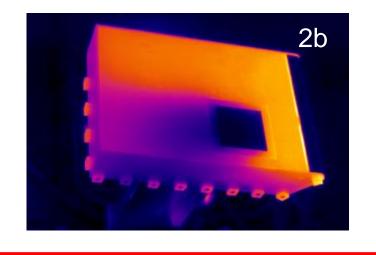
(1a) Innovative composite materials with integrated highly conducting fibres



(1b) TPS structures with intensive radiative heat exchange.



### **Active cooling**


(2a) Sandwich-TPS with ceramic foams

2a CMC

SiC foam

CMC

(2b) Transpiration cooling of external surfaces



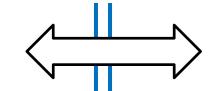

## **Experimental verification**

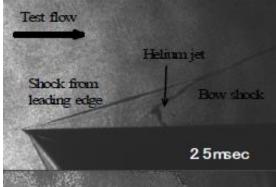
#### Arc tunnel LBK (DLR Köln)

Thermal verification

Not real flight condition however
long test time







### **Shock tunnel HIEST (JAXA Kakuda)**

Aerodynamical interference

Real flight condition however short test time (order of milli-second)

Complementary Wind tunnel test







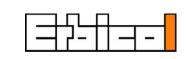








# Kick-off meeting at DLR Köln Feb.2013














University of Applied Sciences and Arts











